Limits to Catalysis by Ribonuclease A.
نویسندگان
چکیده
Bovine pancreatic ribonuclease A (RNase A) catalyzes the cleavage of the P-O(5') bond in RNA. Although this enzyme has been the object of much landmark work in bioorganic chemistry, the nature of its rate-limiting transition state and its catalytic rate enhancement had been unknown. Here, the value of k(cat)/K(m) for the cleavage of UpA by wild-type RNase A was found to be inversely related to the concentration of added glycerol. In contrast, the values of k(cat)/K(m) for the cleavage of UpA by a sluggish mutant of RNase A and the cleavage of the poor substrate UpOC(6)H(4)-p-NO(2) by wild-type RNase A were found to be independent of glycerol concentration. Yet, UpA cleavage by the wild-type and mutant enzymes was found to have the same dependence on sucrose concentration, indicating that catalysis of UpA cleavage by RNase A is limited by desolvation. The rate of UpA cleavage by RNase A is maximal at pH 6.0, where k(cat) = 1.4 × 10(3) s(-1) and k(cat)/K(m) = 2.3 × 10(6) M(-1)s(-1) at 25°C. At pH 6.0 and 25°C, the uncatalyzed rate of [5,6-(3)H]Up[3,5,8-(3)H]A cleavage was found to be k(uncat) = 5 × 10(-9) s(-1) (t(1/2) = 4 years). Thus, RNase A enhances the rate of UpA cleavage by 3 × 10(11)-fold by binding to the transition state for P-O(5') bond cleavage with a dissociation constant of <2 × 10(-15) M.
منابع مشابه
Extending the limits to enzymatic catalysis: diffusion of ribonuclease A in one dimension.
Bovine pancreatic ribonuclease A (RNase A) is a distributive endoribonuclease that catalyzes the cleavage of the P-O5' bond of RNA on the 3' side of pyrimidine residues. Here, RNase A is shown to cleave the P-O5' bond of a pyrimidine ribonucleotide faster when the substrate is embedded within a longer tract of poly(adenylic acid) [poly(A)] or poly(deoxyadenylic acid) [poly(dA)]. These data indi...
متن کاملEffects of Salt and pH on Binding and Catalysis by Ribonuclease A
Salt concentration and pH have dramatic effects on enzymatic catalysis. A quantitative description on these effects is important to elucidate the energetics and mechanisms of catalysis. Here, the effects of salt concentration and pH on binding and catalysis are analyzed with Ribonuclease A (RNase A) as a model system. 11 The effects of pH and mutagenesis on the stability of RNase A-nucleic acid...
متن کاملCharacterization of the transition state of functional enzyme dynamics.
Through characterization of the solvent isotope effect on protein dynamics, we have examined determinants of the rate limitation to enzyme catalysis. A global conformational change in Ribonuclease A limits the overall rate of catalytic turnover. Here we show that this motion is sensitive to solvent deuterium content; the isotope effect is 2.2, a value equivalent to the isotope effect on the cat...
متن کاملOrigin of the 'inactivation' of ribonuclease A at low salt concentration.
The effect of salt concentration on catalysis by ribonuclease A (RNase A) has been reexamined. At low salt concentration, the enzyme is inhibited by low-level contaminants in common buffers. When an uncontaminated buffer system is used or H12A RNase A, an inactive variant, is added to absorb inhibitory contaminants, enzymatic activity is manifested fully at low salt concentration. Catalysis by ...
متن کاملDecavanadate inhibits catalysis by ribonuclease A.
Pentavalent organo-vanadates have been used extensively to mimic the transition state of phosphoryl group transfer reactions. Here, decavanadate (V(10)O(28)6-) is shown to be an inhibitor of catalysis by bovine pancreatic ribonuclease A (RNase A). Isothermal titration calorimetry shows that the Kd for the RNase A decavanadate complex is 1.4 microM. This value is consistent with kinetic measurem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioorganic chemistry
دوره 23 4 شماره
صفحات -
تاریخ انتشار 1995